South Africa from Zero to Pilot Project and Offshore Assessment

June 2017 2nd International Workshop on Offshore Geologic CO2 Storage

Mr N Kamrajh Manager: Pilot CO2 Storage Project

www.sacccs.org.za

South African Centre for carboncapture &storage

South Africa's Energy Profile

South Africa's Carbon Capture and Storage Programme

Offshore Assessment

South African Energy

South African Energy Chain

CO₂ Emissions Quantification

	Mt	% Emission	l	
SEQUESTRABLE				
Electricity	161	ר 65		
Industrial	28	11	249 Mt	61 %
Other Energy	30	12		
Manufacturing	30	12		
Synfuel Industry	~30 million tonn	es ~95% CO ₂	>	
NON-SEQUESTR	ABLE		-	
Waste	10	ر 6		
Agriculture	48	27		
Fugitive	42	24 🍾	159 Mt	39 %
Transport	22	21		
Heat Production	37	21		
Total	100			

Carbon Capture and Storage is a Clean Coal Technology Fossil Fuel Renewable Renewable **Nuclear** Nuclear **TRANSITION Clean Fossil Fuels Technologies**

Carbon Capture and Storage in South Africa

Carbon Capture and Storage: Mandate

CCS is a part of the Long Term Mitigation Scenarios - DEAT

CCS is a Flagship Programme of the White Paper on Climate Change Response Strategy DEA

Cabinet endorsed the CCS Road map May, 2012

Objectives: Pilot CO₂ Storage Project

South African Centre for carboncapture &storage

- Demonstrate safe and secure CO₂ storage in South African conditions ["Proof of Concept"]
- Increase the South African human and technical capacity
- Raise awareness of the potential importance of CCS
- Platform for government to develop a South African CCS legal and regulatory environment

FOCUS ON ZULULAND ON-SHORE BASIN

Time/Scale for Carbon Capture and Storage in South Africa

2004: CCS Potential - Done

2010: Carbon Atlas - Done

Launched by Minister Oct 2010

2017: Pilot CO₂ Storage Project -

Planned [10 to 50 thousand tonnes]

2025: Integrated Demonstration Plant -

Planned [100's thousands tonnes]

2035: Commercial Operation -

Planned 2025 [millions tonnes]

Pilot CO₂ Project Tangible Outputs

The Development of the Pilot CO2 Storage Project

Stakeholder Engagement

- * Afford Stakeholders an opportunity to raise concerns / issues and make suggestions; and
- Treat them with respect.

Funding

- South African Government Department of Energy
- World Bank CCS Trust Fund

Offshore Assessment

Potential for Carbon Dioxide Storage in South Africa

Atlas indicated a Storage Potential:

- 150 Giga tonnes
- At an "effective level"
- 98% off-shore
- Need:
 - 4 Giga tonnes
 - To store 40 million tonnes
 - For 100 years

Storage capacity (off-shore and on shore)

Based on the SACCCS Roadmap, the final part of the CCS programme in South Africa will be to implement a programme of Carbon Capture and Storage on a commercial scale. This will be at a Low Case involving 20Mt/a or a High Case involving 40Mt/a, beginning around 2025.

The purposes of this study was to identify Basins and Sub-basins that might be suitable for the storage of CO2 captured in the Commercial Operation.

The three main offshore basins considered were the Durban Zululand, the Outeniqua and the Orange basin. A number of sub basins in the Outeniqua Basin, the Bredasdorp, the Pletmos-Infanta and the Algoa-Gamtoos were also considered.

A screening exercise to assess the suitability of these Basins and Sub-basins was undertaken using the Bachu methodology, with the criteria adapted to the specific requirements of the Commercial Operation in the South African context.

Basin Screening and Ranking

- Based on Stefan Bachu (2003) methodology (commonly accepted by the CCS community)
 - Screening and ranking of sedimentary basins for sequestration of CO₂ in geological media in response to climate change
- Modified by CO2CRC in 2008
- Utilised and modified by Viljoen et al (2010)
- Modified by SLR for Nova Scotia, Baltic Sea and South Africa
- Study Commissioned by SACCCS and undertaken by SLR

South African Centre for carbon capture & storage

	Suitability Criterion	Suitability Threshold	Weight
1	Seismicity (Tectonic setting)	< High (i.e., not in subduction zones)	0.06
2	Size	> 2 500 km ²	0.06
3	Depth	> 800 m	0.07
4	Faulting intensity and dolerite dykes and sheets	Low to moderate	0.07
5	On-/Offshore	Onshore to shallow offshore	0.09
6	Reservoir: seal pairs	At least one major extensive and competent seal	0.08
7	Pressure regime	Not overpressured	0.05
		TOTAL	0.46

Minimum criteria for consideration of sedimentary basins for CO₂ Storage

	Potential Criterion	Poor Potential	Good Potential	Weight		
1	Hydrogeology	Shallow, short	Deep and/or long	0.08		
2	Geothermal	Warm	Cold	0.09		
3	Hydrocarbon potential	None	Large	0.08		
4	Maturity	Poor	Mature	0.06		
5	Coal seams	Too shallow or too deep	Between 400 and 1 000 m depth	0.04		
6	Evaporites	None	Beds	0.01		
7	Accessibility	Difficulty	Good	0.03		
8	Infrastructure	None or poor	Moderate or developed	0.05		
9	CO ₂ sources	At >500 km distance	At <500 km distance	0.08		
10	Coal rank	Anthracite - Lignite	Sub-bituminous -	0.04		
			Bituminous			
			TOTAL	0.54		
Proposed secondary qualifiers for assessing potential of sedimentary basins for CO ₂						
		storage				

	Criterion	Increasing CO ₂ Storage Potential						
		Classes						
		1	2	3	4	5		
1	Seismicity (tectonic setting)	Very high (e.g. subduction)	High (e.g., syn- rift, strike-slip)	Intermediate (e.g. foreland)	Low (e.g. passive margin)	Very low (e.g. cratonic)		
2	Size	Very small (< 1000 km²)	Small (1000 – 5000 km²)	Medium (5000 – 25000 km²)	Large (25000 – 50000 km²)	(> 50000km²)		
3	Depth	Very shallow (< 300 m)	Shallow (300 – 800 m)		Deep (>3500 m)	Intermediate (800 – 3500 m)		
4	Faulting intensity	Extensive		Moderate		Limited		
5	Hydrogeology	Shallow, short flow systems, or compaction flow		Intermediate flow systems		Regional long- range flow systems; topography or erosional flow		
6	Geothermal	Warm basin (>40°C/km)		Moderate (30 – 40°C/km)		Cold basin (<30°C/km)		
7	Reservoir – seal pairs	Poor		Intermediate		Excellent		
8	Coal seams	None	Very shallow (<300 m)		Deep (>800 m)	Shallow (300 – 800 m)		
9	Coal rank	Anthracite	Lignite		Sub-bituminous	Bituminous		
10	Evaporites	None		Domes		Beds		
11	Hydrocarbon potential	None	Small	Medium	Large	Giant		
12	Maturity	Unexplored	Exploration	Developing	Mature	Super-mature		
13	Onshore / offshore	Deep offshore		Shallow offshore		Onshore		
14	Climate	Artic	Sub-artic	Desert	Tropical	Temperate		
15	Accessibility	Inaccessible	Difficult		Acceptable	Easy		
16	Infrastructure	None	Minor		Moderate	Extensive		

Criteria for screening sedimentary basins or sub-basins for geological storage of CO₂ (CO2CRC, 2008)

Basins	Characteristics	Ranking
Bredasdorp Sub-basin	The Bredasdorp Sub-basin is a candidate for CO2 storage based on its low seismicity (tectonic setting), favourable depth, limited faulting and fracturing, excellent reservoir/seals, hydrostatic pressure regime and regional long-range saline flow systems. The sub-basin has no evaporites.	0.74
Orange Basin	The offshore Orange Basin is a candidate for CO2 storage based on its low seismicity (tectonic setting), favourable depth, limited faulting and fracturing, excellent reservoir seal pairs, hydrostatic pressures, regional long-range saline flow systems. The basin is unsuited for CO2 storage because its inaccessibility, no infrastructure and no evaporites.	0.69
Durban Zululand Basin	The offshore Durban Zululand Basin is a candidate for CO2 storage based on its low seismicity (tectonic setting), favourable depth, limited faulting and fracturing, hydrostatic pressures and regional long-range saline flow systems. The basin is unsuited for CO2 storage because it is no infrastructure and no evaporites.	0.6
Pletmos-Infanta Sub- basin	The Pletmos-Infanta Sub-basin is a candidate for CO2 storage based on its low seismicity (tectonic setting), favourable depth, excellent reservoir/seals, hydrostatic pressures and regional long-range saline flow systems. The sub-basin is unsuited for CO2 storage because of its inaccessibility, no infrastructure and no evaporites.	0.57
Algoa - Gamtoos Sub- basin	The Algoa and Gamtoos Sub-basin is a candidate for CO2 storage based on its low seismicity (tectonic setting), favourable depth, hydrostatic pressures and regional long-range saline flow systems. The sub-basin is unsuited for CO2 storage because it is unexplored, inaccessibility, no infrastructure and no evaporites.	0.53

Conclusions

- Bredasdorp Sub-basin ranked the highest as it is the location of the offshore Mossel Bay oil and gas fields.
- Orange and Durban Zululand ranked relatively high, with the former scoring somewhat higher, possibly on account of the higher level of hydrocarbon exploration providing better data.
- Durban-Zululand Basin- favours the Durban Basin, as much more of the offshore Zululand Basin is in very deep water.
- The only viable option for the Commercial Operation is the offshore Durban Basin assuming sufficient storage capacity can be identified. The pipeline route is much shorter (550km) and has the advantage of existing pipeline corridor routes
 - Note:
 - If demonstration is needed to prove up commercial storage they will need to be at the same location

Dynamic capacities

		Dyn	Utilisation		
Individual sites	Code Names	Low (P30) Base (P50) High (P70)		Othisation	
Durban & Zululand	DZL	2,000	4,000	6,000	Large
Onshore Zululand	OZL	30	40	60	Small
Orange	ORG	6,000	12,000	18,000	Large
S Outeniqua	STQ	900	1,200	1,500	Small
Bredasdorp	BRD	600	1,500	2,000	Small
Pletmos & Infanta	PLT	1,000	1,200	1,500	Small
Algoa & Gamtoos	ALG	200	400	600	Small
Onshore Algoa	OAG	50	90	120	Small
Total		10,780	20,430	29,780	

Annual injections and injection rates

		Annual Utilisation Rate (Mtpa)			Well Injection Rate (Mtpa)		
Individual sites	Code Names	High (P30)	Base (P50)	Low (P70)	High (P30)	Base (P50)	Low (P70)
Durban & Zululand	DZL	110	110	110	0.10	0.25	0.50
Onshore Zululand	OZL						
Orange	ORG	210	210	210	0.25	1.00	2.50
S Outeniqua	STQ	5	5	5	0.25	0.50	1.25
Bredasdorp	BRD	5	5	5	0.10	0.50	1.25
Pletmos & Infanta	PLT	5	5	5	0.25	1.00	1.25
Algoa & Gamtoos	ALG	5	5	5	0.10	0.25	1.00
Onshore Algoa	OAG	5	5	5	0.25	0.25	0.25

Thank You

Full details available at www.sacccs.org.za

